
Critical behaviour of non-equilibrium q-state systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 6955

(http://iopscience.iop.org/0305-4470/27/21/012)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 27 (1994) 69554962, Printed in the UK 

Critical behaviour of non-equilibrium q-state systems 

Andrea Crisantit and Peter Grassbergert 
t Dipartimento di Fisica, Universita di Roma I, Ple. Aldo Moro, Roma, Italy 
t Physics Department, University of Wuppertal, D-42097 Wuppertal, Germany 

Received 28 July 1994, in final form 13 September 1994 

Abstract. We present hvo classes of non-equilibrium models with critical behaviour. Each 
model is characterized by an integer q > 1. and is defined on configurations of q-valued spins 
on regular lattices. The definitions of the models are very similar to the updating rules in WolSs 
algorithm for lhe Potts model, but both classes break detailed balance. except for q = 2 and 
q = 00. In the first case both models reduce to the Ising model, while one of them reduces 
to percolation (more precisely, to the general epidemic process) for q = M. Lmtions of the 
critical point and critical exponents are estimated in two dimensions. 

It is by now well understood that non-equilibrium models can show critical behaviour 
very similar to second-order phase transitions in equilibrium systems. Indeed, dropping 
the requirement of detailed balance gives additional freedom, and one can observe a much 
richer spectrum of possibilities. These include, in particular, critical behaviour for generic 
values of the control parameters, i.e. systems which do not require the control parameter 
to be set to any non-natural value to be critical. Examples for this are diffusion-limited 
aggregation [l,  21 and various models of self-organized criticality [3-51. 

A problem which is more common in non-equilibrium models than in equilibrium cases 
is that it is often not clear how large the universality classes are. Thus, for example, it is not 
yet clear whether different versions of the sand-pile model [3,6] are in the same universality 
class or not. Another much discussed example is provided by models with an absorbing 
state. The prototype of such models is directed percolation, interpreted as an epidemic 
process without immunization. By now it seems clear that a model for heterogeneous 
catalysis proposed some years ago by Ziff et af [7] does belong to the same universality 
class, in spite of original numerical indications to the contrary [SI. But there still exist a 
number of similar models (some with degenerate absorbing states) for which conflicting 
evidence has been reported concerning universality. 

Another problem which is more frequent in non-equilibrium cases is that no good field- 
theoretic treatment exists. The best known example for this is diffusion-limited aggregation 
which is still not amenable to such a treatment. This does not mean that one cannot write 
down ‘Hamiltonians’ [9,10] or path integrals [ll],  but rather that no good perturbation 
expansions are available which could then be resummed by renormalization-group methods. 
Other models for which this applies are the sand-pile model [I21 and ‘true’ self-avoiding 
walks [13,14] for which the field theories art? intrinsically non-renormalizable [15]. 

In the present paper we want to present two new classes of non-equilibrium critical 
phenomena. They are superlicially similar to the Potts model [16], but they are not defined 
in terms of Hamiltonians. Instead, they are defined algorithmically, by stating the rules for 
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updating the state of a system. This is similar, for example, to the sand-pile model. But 
in contrast to that, our models show ‘conventional’ critical behaviour in the sense that they 
involve control parameters, the critical behaviour only being observed for special values. 
On the other hand, we have not yet been able to apply field-theoretic methods to them. 

Both class of models involve ‘spins’ with q possible orientations (‘colours’), and are 
symmetric under cyclic permutations of the colours. In addition, the first model is invariant 
under the exchange of any two colours, just as the Potts model is. The rules for updating a 
configuration are very similar to WOWS single-cluster variant [17] of the Swendsen-Wang 
dynamics [le] of the Potts model. Thus let us recall WOWS algorithm as applied to the 
q-state Potts model. 

Assume we have a configuration of spins on a hypercubic d-dimensional lattice, with 
spin values si, i E Z d .  The evolution is defined by sequential updatings of randomly 
selected clusters. To make one update, we proceed as follows. 

(i) We pick a random colour s E IO, 1, . . .q  - I]. 
(ii) Pick a random site i E Zd. If si = s, we do not do anything and proceed to the next 

(iii) Otherwise, we build a bond percolation cluster on the subset of sites j which have 

(iv) After this is done, we flip this cluster, i.e. we change all its s, to s, and proceed to the 

The control parameter in this model is the probability p for connecting sites in the 
percolation process in step (iii). It is related to the interaction strength K in the Potts 
model, e-px = exp(K &i,,~(8s,,,v, - l)), by p = 1 - ecK [18]. 

Our first class of models (‘class A’) is obtained from this algorithm by keeping steps 
(i), (ii) and (iv). but replacing step (iii) by 

(iiiA) Build a bond percolation cluster on the sites j which are connected with site i and 

Again this is done with probability p for each bond. But for this model we were not able to 
prove detailed balance for general values of q,  and we thus cannot relate p with a coupling 
strength in any Hamiltonian. 

In the second class of models (‘class B’) we skip step (i), keep step (iii), and replace 
the other steps by 
(iiB) Pick a random site i E Z d .  
(ivB) Flip all spins of the percolation cluster into colour si -I- 1 modq, i.e. rotate the entire 

cluster in colour space by an angle 2irfq. 

In this model the braking of detailed balance is evident. 
The simplest case is q = 2. In this case, the Potts model goes over into the king model 

if we perform the trivial relabelling s = 0 + s = -1. It is easy to see that, in this case, 
models A and B are also equivalent to the king model. 

Another simple limit is q = m. In this limit, s, will be different from s with probability 
1, and thus the cluster built in step (iiiA) is just an ordinary bond percolation cluster on the 
entire lattice. Thus model A is equivalent to the spreading of bond percolation according 
to the general epidemic process [19] or the Leath algorithm [ZO]. 

The q + 03 limit of model B is rather different. It is easy to see that there is no ordering 
for any finite p in this limit. For finite q and p .  there is a balance between ordering due 
to the fact that two sites i ,  k which originally had sj = Sk - 1 might get the same colours 
by flipping j ,  and disordering because a coherent cluster is broken up. For q + 00, the 
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update. 

sj = si and which are connected to i. 

next update. 

which have s, # s. 
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ordering disappears, and thus the transition point has to shift to pc  + 1. For q = CO all 
clusters are trivial (just one site) for all p .  suggesting that the transition turns into first order 
(all scaling law amplitudes + 0) for q + CO. Notice that this conclusion rests on the fact 
that the fractal dimension of percolation clusters at p < pc is zero, whence the ordering by 
each cluster flip effects only a vanishing fraction of sites, and a random initial configuration 
remains essentially random. This is not so on finite lattices (in particular at d = 2) ,  since 
there the co-dimension of percolation clusters is very small, and hence typical cluster flips 
involve large parts of lattice. Thus we expect very large finite-size effects in model B even 
for finite values of q. 

Next let us discuss mean-field theory. In both models, this implies that a spin not yet 
checked during the build-up of a cluster has the same probability I / q  to have any of the q 
possible colours. In a strict mean-field treatment one would also assume the same for sites 
which had already been visited during the present cluster evolution. In the following we 
shall discuss a more realistic ‘hybrid’ mean-field ansatz where we do not make the latter 
approximation. In this case both models reduce to mixed-site bond percolation. In model 
A we have bonds established with probability p, and sites with probability 1 - l / q .  In 
model B, the bond probability is the same, but the site probability is l j q .  This implies 
correctly that model A turns into bond percolation for q -+ CO. But it predicts a qualitatively 
wrong behaviour for model B, as it would imply that model B does not become critical for 
q t I / P ~ , G ( ~ ,  where pc,sire is the threshold for site percolation on the same lattice. This is 
obviously a weakness of our mean-field ansatz, as it would mean that even the Ising model 
(q  = 2) is non-critical in two dimensions. The same problem would occur for the strict 
mean-field treatment mentioned above, and for the original Swensen-Wang-Wolff model 
with q > 2. 

In the following we shall report results from simulations on 2D square lattices of size 
N x N with periodic boundary conditions. We used both depth-first [21, 221 and width-first 
(‘Leath‘ [20]) algorithms for building the percolation clusters. While the first are somewhat 
simpler when implemented by recursive function calls, the temporal behaviour is more 
natural in the latter as it corresponds to epidemic-like spreading [19]. The critical point and 
the distribution of cluster sizes (and of cluster radii) is identical with both algorithms. In 
all cases a sufficient number of cluster flips during the initial transient stage was discarded, 
i.e. all data reported below refer to the stationary state. 

In order to obtain pc  for model class A, we used two different procedures. In the first 
(finite-size scaling) we used relatively small lattices (up to N = 1024), and determined 
p e , ~  from the requirement that the cluster size distribution P N ( s )  shows the longest scaling 
region for this value of p .  In figure 1 this is illustrated for q = 3 and N = 1024. Values 
of p c . ~  resulting from this and analogous plots are plotted against 1/N in figure 2, We see 
a straight line for N 200 which extrapolates to 

pc  = 0.5330 & 0.0004. (1) 

In the second procedure, we used much larger lattices (up to 8192 x 8192) and sufficiently 
small values of p so that all cluster diameters were < N and finite-size effects were 
negligible. In figure 3, resulting average cluster sizes (3) are plotted against po - p for 
three different values of po.  Since we expect 

(2) 

we expect a straight line at po = pc .  This is indeed observed, with the same pc as above 
and with y = 1.65 f 0.05. The error is mainly systematic due to a slight but significant 
curvature in figure 3. 

( 8 )  - ( P c  - P r y  
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Figure 2. Finite-size critical values p r , ~  WISUS 1/N for q = 3. For large N lhe data seem to 
follow a straight line. the extrapolation of which to I IN = 0 gives pE (broken line). 

Similar deviations form scaling behaviour are seen in the average cluster evolution times 
and in the size distribution P ( s ) .  The former satisfies 

(2') - ( p ,  - p)-' S 0.85 (3) 

(see figure 4), but there are rather strong deviations from a pure scaling law. 
From figure 1 we see that the distributions PN(s )  on finite lattices at p = p c , ~  fulfill 
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Figure 3. Log-log plot of average cluster size for q = 3 against p - w, for p~ = 0.5325,0.533 
and 0.5335. A roughly smight line is seen for pn = pc s 0.533, but notice that there axe small 
but significant deviations. 

Figure 4. Same as figure 3, but far the average cluster lifetime. 

roughly a scaling law 

pN(S) I/$ (4) 

for s << NZ, i.e. in the usual notation [23] we have 5 % 2. Results for larger lattices and 
p < pc are shown in figure 5. We see there again roughly P ( s )  - l/s for s c ( p c  - p)-Y 
(notice that bin sizes are N s in figure 5, in conrrast to fixed bin sizes in figure 1). But this 
is superimposed by oscillations whose amplitude increases as we approach the critical point. 
The latter is very different from the king (p = 2) and percolation ( q  = 00) limits, but was 
also observed for q = 4 and for the time distribution for q = 3 and q = 4. On the other 
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Figure 5. Cluster size distributions (q = 3) for subcritical p on practically infinite lanices. 
Values of p are 0.5292,0.531. and 0.5318. Data are binned into bins Is, 2s - 11. 

Figure 6. Similar as figure 5. but for model B with q = 3. Values of p are 0.61, 0.63, and 
0.6326. 

hand, model B leads to cluster-size distributions which are qualitatively as in percolation 
and in the king model, see figure 6. 

Results for pc and for the critical exponent y are summarized in table 1, for both 
model classes. For class A, we see that pc  interpolates monotonically between the Ising 
and percolation limits. The latter is approached very quickly. On the other hand, y seems 
first to fall below the Ising value 3 ,  and rises only very slowly towards the percolation limit 

= 2.388 for q -+ CO. For class B we see that there is a phase transition for all values of 
q with p,(q) -+ 1 very slowly for q + CO. The amplitudes in the scaling laws for class B 
seem to tend towards zero for q -+ CO (the clusters become very small except when p is 
very near pc), in agreement with the arguments given above. We do not quote exponents 
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Table 1. 

q = ?  q = 3  q = 4  q = s  q = m  

Model A: 
p E  0.5858 0.5330 0.5170 0.5029 0.5 
y 1.75 1.65 1.79 1.88 2.388 
T 2 a 2  4 2  - 2  2.055 
Model B: 
ps 0.5858 0.633 0.6667 0,7393 1 
Y 1.75 1.35 1.21 0.71 - 

6 because they are very strongly affected by corrections to scaling, and we do not quote 
exponents r for class B for the same reason. 

There, one has a first-order 
transition for q z 4. Thus one might wonder whether there is some range in q in which 
one of our models also has a first-order transition. We have not found any indication for 
that. 

In summary, in this paper we have presented evidence for two new classes of non- 
equilibrium critical phenomena. Both classes use Potts spins, and are defined via cluster 
evolution rules similar to those of the Wolff dynamics for the Potts model. The most 
interesting aspect of the first class is that it interpolates between the king model (q  = 2) 
and percolation (q  = 00). For this class we have not been able to find any observable 
which shows broken detailed balance. We thus cannot exclude that an equilibrium version 
also exists for this model, possibly with long-range interactions (otherwise it would be hard 
to understand why these models have not been found before). 

In class B, breaking of detailed balance is evident. Indeed, the transition in class B 
is from desyncbronized cyclic behaviour to synchronized by formation of a percolating 
cluster of sites with common phase. Synchronization in spatially extended models was 
studied recently in [24,25]. In [24] it was argued that no synchronization can occur in 
stochastic discrete models with z 2 states. Continuous models were studied in [25] where 
a connection was established with surface roughening in Kardar-Parisi-Zhang growth. The 
latter suggests that no phase transition with long-range order occurs in d = 2 for such 
models either. These predictions are in clear contrast to our findings. This reflects basic 
differences in the dynamics underlying model B and the systems studied in [24, 251. While 
it is assumed in the latter that the phase proceeds rather uniformly with locally independent 
fluctuations, the phase progress in the ordered phase of model B is dominated by rigid 
flippings of entire large clusters. 

Finally, we have neither done any simulations in d z 2, nor have we attempted a field- 
theoretic treatment. Using methods of [9-111 it should not be difficult to set up the field 
theory. But it might be much harder to find a systematic perturbation expansion. 

Superficially, our models resemble the Potts model. 
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